Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 151, Pages 37–44 (Mi into338)  

This article is cited in 5 scientific papers (total in 5 papers)

Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures

D. V. Zavadskii

Moscow Institute of Physics and Technology (State University)
Full-text PDF (185 kB) Citations (5)
References:
Abstract: We examine translation-invariant measures on Banach spaces $l_p$, where $p\in[1,\infty]$. We construct analogs of the Lebesgue measure on Borel $\sigma$-algebras generated by the topology of pointwise convergence ($\sigma$-additive, invariant under shifts by arbitrary vectors, regular measures). We show that these measures are not $\sigma$-finite. We also study spaces of functions integrable with respect to measures constructed and prove that these spaces are not separable. We consider various dense subspaces in spaces of functions that are integrable with respect to a translation-invariant measure. We specify spaces of continuous functions, which are dense in the functional spaces considered. We discuss Borel $\sigma$-algebras corresponding to various topologies in the spaces $l_p$, where $p\in[1,\infty]$. For $p\in [1, \infty)$, we prove the coincidence of Borel $\sigma$-algebras corresponding to certain natural topologies in the given spaces of sequences and the Borel $\sigma$-algebra corresponding to the topology of pointwise convergence. We also verify that the space $l_\infty$ does not possess similar properties.
Keywords: translation-invariant measure, topology of pointwise convergence, Borel $\sigma$-algebra, space of integrable functions, approximation of integrable functions by continuous functions.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 1, Pages 36–42
DOI: https://doi.org/10.1007/s10958-020-05139-8
Bibliographic databases:
Document Type: Article
UDC: 517.982, 517.983
MSC: 28C20, 81Q05, 47D08
Language: Russian
Citation: D. V. Zavadskii, “Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures”, Quantum probability, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 37–44; J. Math. Sci. (N. Y.), 252:1 (2021), 36–42
Citation in format AMSBIB
\Bibitem{Zav18}
\by D.~V.~Zavadskii
\paper Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures
\inbook Quantum probability
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 151
\pages 37--44
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903364}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 1
\pages 36--42
\crossref{https://doi.org/10.1007/s10958-020-05139-8}
Linking options:
  • https://www.mathnet.ru/eng/into338
  • https://www.mathnet.ru/eng/into/v151/p37
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025