Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 151, Pages 10–20 (Mi into336)  

This article is cited in 3 scientific papers (total in 3 papers)

Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra

A. M. Bikchentaev

Kazan (Volga Region) Federal University
Full-text PDF (225 kB) Citations (3)
References:
Abstract: In this paper, we present new properties of the space $L_1(\mathcal{M},\tau)$ of integrable (with respect to the trace $\tau$) operators affiliated to a semifinite von Neumann algebra ${\mathcal M}$. For self-adjoint $\tau$-measurable operators $A$ and $B$, we find sufficient conditions of the $\tau$-integrability of the operator $\lambda I-AB$ and the real-valuedness of the trace $\tau(\lambda I- AB)$, where $\lambda \in \mathbb{R}$. Under these conditions, $[A,B]=AB-BA\in L_1(\mathcal{M},\tau)$ and $\tau([A, B])=0$. For $\tau$-measurable operators $A$ and $B=B^2$, we find conditions that are sufficient for the validity of the relation $\tau([A,B])=0$. For an isometry $U\in\mathcal{M}$ and a nonnegative $\tau$-measurable operator $A$, we prove that $U-A \in L_1(\mathcal{M},\tau)$ if and only if $I-A, I-U \in L_1(\mathcal{M},\tau)$. For a $\tau$-measurable operator $A$, we present estimates of the trace of the autocommutator $[A^*,A]$. Let self-adjoint $\tau$-measurable operators $X\geq 0$ and $Y$ are such that $[X^{1/2}, Y X^{1/2}] \in L_1(\mathcal{M},\tau)$. Then $\tau ([X^{1/2}, Y X^{1/2}])=it$, where $t \in \mathbb{R}$ and $t=0$ for $XY \in L_1(\mathcal{M},\tau)$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, integrable operator, commutator, autocommutator.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433_р_поволжье_а
Ministry of Education and Science of the Russian Federation 1.1515.2017/4.6
1.9773.2017/8.9
This work was partially supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project No. 15-41-02433) and by the subsidies of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University (project Nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 1, Pages 8–19
DOI: https://doi.org/10.1007/s10958-020-05137-w
Bibliographic databases:
Document Type: Article
UDC: 517.983, 517.986
MSC: 47C15, 46L51
Language: Russian
Citation: A. M. Bikchentaev, “Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra”, Quantum probability, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 10–20; J. Math. Sci. (N. Y.), 252:1 (2021), 8–19
Citation in format AMSBIB
\Bibitem{Bik18}
\by A.~M.~Bikchentaev
\paper Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
\inbook Quantum probability
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 151
\pages 10--20
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903362}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 1
\pages 8--19
\crossref{https://doi.org/10.1007/s10958-020-05137-w}
Linking options:
  • https://www.mathnet.ru/eng/into336
  • https://www.mathnet.ru/eng/into/v151/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024