Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 103–112 (Mi into323)  

This article is cited in 10 scientific papers (total in 10 papers)

Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case

V. E. Fedorovabc, E. A. Romanovaa

a Chelyabinsk State University
b Shadrinsk State Pedagogical University
c South Ural State University, Chelyabinsk
References:
Abstract: In this paper, we prove the unique solvability of the Cauchy problem for a linear inhomogeneous equation in a Banach space that is solved with respect to the Gerasimov–Caputo fractional derivative. We assume that the operator acting on the unknown function in the equation generates a set of resolving operators of the corresponding homogeneous equation, which is exponentially bounded and analytic in a sector containing the positive semiaxis, which is in the sector. The general form of solutions to the Cauchy problem is obtained. The general results are applied to the study of the unique solvability of a certain class of initial-boundary-value problems for partial differential equations solvable with respect to the Gerasimov–Caputo fractional derivative with respect to time, containing in the simplest case initial-boundary-value problems for fractional diffusion and diffusion-wave equations.
Keywords: Gerasimov–Caputo fractional derivative, evolutionary equation, analytic in a sector resolving family of operators, initial-boundary-value problem, diffusion-wave equation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
1.6462.2017/БЧ
This work was supported by the Government of the Russian Federation (Resolution No. 211, 16.03.2013; Agreement No. 02.A03.21.0011) and the Ministry of Education and Science of the Russian Federation (project No. 1.6462.2017/BCh).
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 5, Pages 819–829
DOI: https://doi.org/10.1007/s10958-020-05047-x
Bibliographic databases:
Document Type: Article
UDC: 517.955.1, 517.986.7
MSC: 35R11, 34G10
Language: Russian
Citation: V. E. Fedorov, E. A. Romanova, “Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 103–112; J. Math. Sci. (N. Y.), 250:5 (2020), 819–829
Citation in format AMSBIB
\Bibitem{FedRom18}
\by V.~E.~Fedorov, E.~A.~Romanova
\paper Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case
\inbook Proceedings of the International Conference ``Actual Problems of Applied Mathematics and Physics,'' Kabardino-Balkaria, Nalchik, May 17--21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 149
\pages 103--112
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847729}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 5
\pages 819--829
\crossref{https://doi.org/10.1007/s10958-020-05047-x}
Linking options:
  • https://www.mathnet.ru/eng/into323
  • https://www.mathnet.ru/eng/into/v149/p103
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025