Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 95–102 (Mi into322)  

This article is cited in 5 scientific papers (total in 5 papers)

Riemann–Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane

A. P. Soldatova, O. V. Chernovab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
b National Research University "Belgorod State University"
Full-text PDF (193 kB) Citations (5)
References:
Abstract: In a finite domain $D$ of the complex plane bounded by a smooth contour $\Gamma$, we consider the Riemann–Hilbert boundary-value problem
\begin{equation*} \operatorname{Re} CU^+=f \end{equation*}
for the first-order elliptic system
\begin{equation*} \frac{\partial U}{\partial y}-A\frac{\partial U}{\partial x}+a(z)U(z)+b(z)\overline{U(z)}=F(z) \end{equation*}
with constant leading coefficients. Here $+$ denotes the boundary value of the function $U$ on $\Gamma$, the constant matrices $A_1, A_2 \in\mathbb{C}^{l\times l}$ and $(l\times l)$-matrix coefficients $a$ and $b$ belong to the Hölder class $C^{\mu}$, $0<\mu<1$, and $(l\times l)$-matrix function $C$ belongs to the class $C^\mu(\Gamma)$. We prove that in the class $U\in C^\mu(\overline{D})\cap C^1(D)$, this problem is a Fredholm problem and its index is given by the formula
\begin{equation*} \varkappa=-\sum_{j=1}^m\frac{1}{\pi} \big[\arg\det G\big]_{\Gamma_j}+(2-m)l. \end{equation*}
Keywords: elliptic systems, Riemann–Hilbert problem, index formula, Fredholm operator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.7311.2017/БЧ
This work was supported by the Ministry of Education and Science of the Russian Federation (project No. 1.7311.2017/BCh).
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 5, Pages 811–818
DOI: https://doi.org/10.1007/s10958-020-05046-y
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35Jxx, 58J10, 58J20
Language: Russian
Citation: A. P. Soldatov, O. V. Chernova, “Riemann–Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 95–102; J. Math. Sci. (N. Y.), 250:5 (2020), 811–818
Citation in format AMSBIB
\Bibitem{SolChe18}
\by A.~P.~Soldatov, O.~V.~Chernova
\paper Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
\inbook Proceedings of the International Conference ``Actual Problems of Applied Mathematics and Physics,'' Kabardino-Balkaria, Nalchik, May 17--21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 149
\pages 95--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847728}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 5
\pages 811--818
\crossref{https://doi.org/10.1007/s10958-020-05046-y}
Linking options:
  • https://www.mathnet.ru/eng/into322
  • https://www.mathnet.ru/eng/into/v149/p95
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :72
    References:29
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024