|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 95–102
(Mi into322)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Riemann–Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
A. P. Soldatova, O. V. Chernovab a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
b National Research University "Belgorod State University"
Abstract:
In a finite domain $D$ of the complex plane bounded by a smooth contour $\Gamma$, we consider the Riemann–Hilbert boundary-value problem
\begin{equation*}
\operatorname{Re} CU^+=f
\end{equation*}
for the first-order elliptic system
\begin{equation*}
\frac{\partial U}{\partial y}-A\frac{\partial U}{\partial x}+a(z)U(z)+b(z)\overline{U(z)}=F(z)
\end{equation*}
with constant leading coefficients. Here $+$ denotes the boundary value of the function $U$ on $\Gamma$, the constant matrices $A_1, A_2 \in\mathbb{C}^{l\times l}$ and $(l\times l)$-matrix coefficients $a$ and $b$ belong to the Hölder class $C^{\mu}$, $0<\mu<1$, and $(l\times l)$-matrix function $C$ belongs to the class $C^\mu(\Gamma)$. We prove that in the class $U\in C^\mu(\overline{D})\cap C^1(D)$, this problem is a Fredholm problem and its index is given by the formula
\begin{equation*}
\varkappa=-\sum_{j=1}^m\frac{1}{\pi} \big[\arg\det G\big]_{\Gamma_j}+(2-m)l.
\end{equation*}
Keywords:
elliptic systems, Riemann–Hilbert problem, index formula, Fredholm operator.
Citation:
A. P. Soldatov, O. V. Chernova, “Riemann–Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 95–102; J. Math. Sci. (N. Y.), 250:5 (2020), 811–818
Linking options:
https://www.mathnet.ru/eng/into322 https://www.mathnet.ru/eng/into/v149/p95
|
Statistics & downloads: |
Abstract page: | 309 | Full-text PDF : | 72 | References: | 29 | First page: | 26 |
|