Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 56–63 (Mi into318)  

This article is cited in 3 scientific papers (total in 3 papers)

Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции

A. I. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (191 kB) Citations (3)
References:
Abstract: We examine the solvability of the boundary-value problems for the differential equation
\begin{gather*} h(t)u_t+(-1)^mD^{2m+1}_au-\Delta u+c(x,t,a)u=f(x,t,a); \\ x\in\Omega\subset \mathbb{R}^n, \quad 0<t<T, \quad 0<a<A, \quad D^k_a=\frac{\partial^k}{\partial a^k}, \end{gather*}
where the sign of the function $h(t)$ arbitrarily alternates in the interval $[0,T]$. The existence and uniqueness theorems of regular (i.e., possessing all generalized derivatives in the Sobolev sense) solutions are proved.
Keywords: ultraparabolic equation, nonclassical differential equation of odd order, evolution, boundary-value problem, regular solution, existence, uniqueness.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-06582
This work was partially supported by the Russian Foundation for Basic Research (project No. 15-01-06582).
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 5, Pages 772–779
DOI: https://doi.org/10.1007/s10958-020-05042-2
Bibliographic databases:
Document Type: Article
UDC: 517.946
MSC: 35M99, 35K70
Language: Russian
Citation: A. I. Kozhanov, “Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 56–63; J. Math. Sci. (N. Y.), 250:5 (2020), 772–779
Citation in format AMSBIB
\Bibitem{Koz18}
\by A.~I.~Kozhanov
\paper Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции
\inbook Proceedings of the International Conference ``Actual Problems of Applied Mathematics and Physics,'' Kabardino-Balkaria, Nalchik, May 17--21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 149
\pages 56--63
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847724}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 5
\pages 772--779
\crossref{https://doi.org/10.1007/s10958-020-05042-2}
Linking options:
  • https://www.mathnet.ru/eng/into318
  • https://www.mathnet.ru/eng/into/v149/p56
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :68
    References:36
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024