|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 56–63
(Mi into318)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции
A. I. Kozhanov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract:
We examine the solvability of the boundary-value problems for the differential equation
\begin{gather*}
h(t)u_t+(-1)^mD^{2m+1}_au-\Delta u+c(x,t,a)u=f(x,t,a); \\
x\in\Omega\subset \mathbb{R}^n, \quad 0<t<T, \quad 0<a<A, \quad
D^k_a=\frac{\partial^k}{\partial a^k},
\end{gather*}
where the sign of the function $h(t)$ arbitrarily alternates in the interval $[0,T]$. The existence and uniqueness theorems of regular (i.e.,
possessing all generalized derivatives in the Sobolev sense) solutions are proved.
Keywords:
ultraparabolic equation, nonclassical differential equation of odd order, evolution, boundary-value problem, regular solution, existence,
uniqueness.
Citation:
A. I. Kozhanov, “Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 56–63; J. Math. Sci. (N. Y.), 250:5 (2020), 772–779
Linking options:
https://www.mathnet.ru/eng/into318 https://www.mathnet.ru/eng/into/v149/p56
|
Statistics & downloads: |
Abstract page: | 269 | Full-text PDF : | 68 | References: | 36 | First page: | 12 |
|