|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 38–43
(Mi into316)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On Properties of an Integer Function That Generalizes the Wright Function
L. L. Karasheva Institute of Applied Mathematics and Automation, Nalchik
Abstract:
In this paper, properties of an integer function that is a generalization of the Wright function are examined. Various representations, estimates,
and differentiation formulas are obtained.
Keywords:
integer function, Wright function, special function.
Citation:
L. L. Karasheva, “On Properties of an Integer Function That Generalizes the Wright Function”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 38–43; J. Math. Sci. (N. Y.), 250:5 (2020), 753–759
Linking options:
https://www.mathnet.ru/eng/into316 https://www.mathnet.ru/eng/into/v149/p38
|
Statistics & downloads: |
Abstract page: | 247 | Full-text PDF : | 102 | References: | 23 | First page: | 10 |
|