Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 31–37 (Mi into315)  

Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative

S. Kh. Gekkieva

Institute of Applied Mathematics and Automation, Nalchik
References:
Abstract: In this paper, we consider the Gevrey problem for a loaded parabolic equation with the direct and reverse time in an unbounded region. The question on the solvability of this problem is reduced to the issue of the solvability of the generalized Abel equation in the class of function satisfying the Hölder condition.
Keywords: Gevrey problem, loaded equation, Riemann–Liouville fractional differentiation operator, function of Wright type, Abel equation, Hölder condition.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 5, Pages 746–752
DOI: https://doi.org/10.1007/s10958-020-05039-x
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35M12
Language: Russian
Citation: S. Kh. Gekkieva, “Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 31–37; J. Math. Sci. (N. Y.), 250:5 (2020), 746–752
Citation in format AMSBIB
\Bibitem{Gek18}
\by S.~Kh.~Gekkieva
\paper Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative
\inbook Proceedings of the International Conference ``Actual Problems of Applied Mathematics and Physics,'' Kabardino-Balkaria, Nalchik, May 17--21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 149
\pages 31--37
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847721}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 5
\pages 746--752
\crossref{https://doi.org/10.1007/s10958-020-05039-x}
Linking options:
  • https://www.mathnet.ru/eng/into315
  • https://www.mathnet.ru/eng/into/v149/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024