Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 149, Pages 14–24 (Mi into313)  

This article is cited in 3 scientific papers (total in 3 papers)

Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain

Zh. A. Balkizov

Institute of Applied Mathematics and Automation, Nalchik
Full-text PDF (215 kB) Citations (3)
References:
Abstract: We consider a nonlocal boundary-value problem for a third-order parabolic-hyperbolic equation with degeneracy of type and order in the domain of hyperbolicity, containing second-order derivatives in the boundary conditions. Sufficient conditions of the unique solvability of the problem are obtained. The Tricomi method is used to prove the uniqueness theorem for a solution. The solution of the problem is expressed in the explicit form.
Keywords: degenerate hyperbolic equation of the first kind, equation with multiple characteristics, third-order parabolic-hyperbolic equation, mixed boundary-value problem, nonlocal boundary-value problem, Tricomi problem, Tricomi method, Volterra integral equation of the second kind, Fredholm integral equation of the second kind.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 5, Pages 728–739
DOI: https://doi.org/10.1007/s10958-020-05037-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.6
MSC: 35M10, 35M13
Language: Russian
Citation: Zh. A. Balkizov, “Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149, VINITI, Moscow, 2018, 14–24; J. Math. Sci. (N. Y.), 250:5 (2020), 728–739
Citation in format AMSBIB
\Bibitem{Bal18}
\by Zh.~A.~Balkizov
\paper Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain
\inbook Proceedings of the International Conference ``Actual Problems of Applied Mathematics and Physics,'' Kabardino-Balkaria, Nalchik, May 17--21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 149
\pages 14--24
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847719}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 5
\pages 728--739
\crossref{https://doi.org/10.1007/s10958-020-05037-z}
Linking options:
  • https://www.mathnet.ru/eng/into313
  • https://www.mathnet.ru/eng/into/v149/p14
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :139
    References:33
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024