Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 148, Pages 32–36 (Mi into301)  

On a Dynamical System That Describes the Motion of a Parachutist

I. Yu. Klochkova

V. F. Margelov Ryazan Higher Airborne Command School
References:
Abstract: We consider a system of differential equations describing the free fall of a parachutist and his dropping with the open parachute canopy. The system is studies qualitatively and its possible equilibrium states are examined. The calculations were performed for experimental data obtained from realistic jumps.
Keywords: differential equation, free fall, parachute, equilibrium state.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 248, Issue 4, Pages 404–408
DOI: https://doi.org/10.1007/s10958-020-04881-3
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 34A99, 34M35, 34N05
Language: Russian
Citation: I. Yu. Klochkova, “On a Dynamical System That Describes the Motion of a Parachutist”, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148, VINITI, M., 2018, 32–36; J. Math. Sci. (N. Y.), 248:4 (2020), 404–408
Citation in format AMSBIB
\Bibitem{Klo18}
\by I.~Yu.~Klochkova
\paper On a Dynamical System That Describes the Motion of a Parachutist
\inbook Proceedings of the International Conference ``Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,'' Ryazan, September 15--18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 148
\pages 32--36
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847706}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 248
\issue 4
\pages 404--408
\crossref{https://doi.org/10.1007/s10958-020-04881-3}
Linking options:
  • https://www.mathnet.ru/eng/into301
  • https://www.mathnet.ru/eng/into/v148/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :78
    References:15
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024