Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 148, Pages 10–12 (Mi into297)  

On a Regularization Method for Solutions of One Linear Ill-Posed Problem

E. A. Borisova

Academy of Labour and Social Relations, Moscow
References:
Abstract: An effective and easy regularization method for solutions of a linear ill-posed problem (namely, a Fredholm equation of the first kind) is proposed.
Keywords: linear ill-posed problem, Fredholm equations, regularization of solutions.
English version:
Journal of Mathematical Sciences, 2020, Volume 248, Issue 4, Pages 382–384
DOI: https://doi.org/10.1007/s10958-020-04877-z
Bibliographic databases:
Document Type: Article
UDC: 517.983.54
MSC: 47S99
Language: Russian
Citation: E. A. Borisova, “On a Regularization Method for Solutions of One Linear Ill-Posed Problem”, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148, VINITI, M., 2018, 10–12; Journal of Mathematical Sciences, 248:4 (2020), 382–384
Citation in format AMSBIB
\Bibitem{Bor18}
\by E.~A.~Borisova
\paper On a Regularization Method for Solutions of One Linear Ill-Posed Problem
\inbook Proceedings of the International Conference ``Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,'' Ryazan, September 15--18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 148
\pages 10--12
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3847702}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 248
\issue 4
\pages 382--384
\crossref{https://doi.org/10.1007/s10958-020-04877-z}
Linking options:
  • https://www.mathnet.ru/eng/into297
  • https://www.mathnet.ru/eng/into/v148/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :35
    References:21
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024