Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 147, Pages 3–50 (Mi into293)  

This article is cited in 1 scientific paper (total in 1 paper)

Ind-Varieties of Generalized Flags: A Survey of Results

M. V. Ignatyeva, I. Penkovb

a Samara National Research University
b Jacobs University, Bremen
Full-text PDF (590 kB) Citations (1)
References:
Abstract: This paper is a review of results on the structure of the homogeneous ind-varieties $G/P$ of the ind-groups $G=GL_{\infty}(\mathbb{C})$, $SL_{\infty}(\mathbb{C})$, $SO_{\infty}(\mathbb{C})$, and $Sp_{\infty}(\mathbb{C})$, subject to the condition that $G/P$ is the inductive limit of compact homogeneous spaces $G_n/P_n$. In this case, the subgroup $P\subset G$ is a splitting parabolic subgroup of $G$ and the ind-variety $G/P$ admits a “flag realization.” Instead of ordinary flags, one considers generalized flags that are, in general, infinite chains $\mathcal{C}$ of subspaces in the natural representation $V$ of $G$ satisfying a certain condition; roughly speaking, for each nonzero vector $v$ of $V$, there exist the largest space in $\mathcal{C}$, which does not contain $v$, and the smallest space in $\mathcal{C}$ which contains $v$. We start with a review of the construction of ind-varieties of generalized flags and then show that these ind-varieties are homogeneous ind-spaces of the form $G/P$ for splitting parabolic ind-subgroups $P\subset G$. Also, we briefly review the characterization of more general, i.e., nonsplitting, parabolic ind-subgroups in terms of generalized flags. In the special case of the ind-grassmannian $X$, we give a purely algebraic-geometric construction of $X$. Further topics discussed are the Bott–Borel–Weil theorem for ind-varieties of generalized flags, finite-rank vector bundles on ind-varieties of generalized flags, the theory of Schubert decomposition of $G/P$ for arbitrary splitting parabolic ind-subgroups $P\subset G$, as well as the orbits of real forms on $G/P$ for $G=SL_{\infty}(\mathbb{C})$.
Keywords: ind-variety, ind-group, generalized flag, Schubert decomposition, real form.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-97017
16-01-00154
Ministry of Education and Science of the Russian Federation 204
Deutsche Forschungsgemeinschaft PE 980/6-1
The first author was partially supported by the Russian Foundation for Basic Research (project Nos. 14-01-97017 and 16-01-00154) and by the Ministry of Science and Education of the Russian Federation (project No. 204). A part of this work was done during the stay of the first author at the Jacobs University Bremen; the first author thanks this institution for its hospitality. The authors were partially supported by Deutsche Forschungsgemeinschaft (project PE 980/6-1).
English version:
Journal of Mathematical Sciences, 2020, Volume 248, Issue 3, Pages 255–302
DOI: https://doi.org/10.1007/s10958-020-04873-3
Bibliographic databases:
Document Type: Article
UDC: 512.745.4, 512.815, 512.554.32, 514.765
MSC: 22E65, 17B65, 14M15
Language: Russian
Citation: M. V. Ignatyev, I. Penkov, “Ind-Varieties of Generalized Flags: A Survey of Results”, Proceedings of the Seminar on algebra and geometry of the Samara University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 147, VINITI, Moscow, 2018, 3–50; Journal of Mathematical Sciences, 248:3 (2020), 255–302
Citation in format AMSBIB
\Bibitem{IgnPen18}
\by M.~V.~Ignatyev, I.~Penkov
\paper Ind-Varieties of Generalized Flags: A Survey of Results
\inbook Proceedings of the Seminar on algebra and geometry of the Samara University
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 147
\pages 3--50
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3824404}
\zmath{https://zbmath.org/?q=an:1372.22019|1334.17012}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 248
\issue 3
\pages 255--302
\crossref{https://doi.org/10.1007/s10958-020-04873-3}
Linking options:
  • https://www.mathnet.ru/eng/into293
  • https://www.mathnet.ru/eng/into/v147/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :88
    References:32
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024