Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 145, Pages 114–122 (Mi into285)  

This article is cited in 6 scientific papers (total in 6 papers)

Analytical and Numerical Solution of the Problem on Brachistochrones in Some General Cases

S. O. Gladkov, S. B. Bogdanova

Moscow Aviation Institute (National Research University)
Full-text PDF (357 kB) Citations (6)
References:
Abstract: In this paper, we discuss J. Bernoulli' brachistochrone problem and find its analytical and numerical solutions in the cases where viscous or dry friction are taken into account. We predict the existence of a point of “geometrical phase transition” $u_0=\ln({1}/{2k_2b})$; it corresponds to the transition from one class of trajectories to another, which qualitatively differs from the initial class. Numerical simulation of the motion in a neighborhood of points of geometric phase transitions is performed. We prove that in the absence of friction forces, the minimization problem for the motion time for any motion along a curvilinear trough under the action of the gravity force can be always reduced to the brahistochrone problem and can be solved without involving methods of calculus of variation, only by general dynamical laws. We find a solution to the classical Bernoulli problem under the condition that the length of the trajectory is fixed. We show that under this isoperimetric condition, the class of trajectories differs from the classical brachistochrone. We also observe the transformation of these trajectories to the cycloid by numerical and analytical analysis.
Keywords: numerical simulation, brachistochrone, dissipative function, instantaneous coordinate system, geometric phase transition, isoperimetric condition.
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 4, Pages 528–537
DOI: https://doi.org/10.1007/s10958-020-04709-0
Bibliographic databases:
Document Type: Article
UDC: 517.91, 531.3
MSC: 70B05
Language: Russian
Citation: S. O. Gladkov, S. B. Bogdanova, “Analytical and Numerical Solution of the Problem on Brachistochrones in Some General Cases”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145, VINITI, M., 2018, 114–122; Journal of Mathematical Sciences, 245:4 (2020), 528–537
Citation in format AMSBIB
\Bibitem{GlaBog18}
\by S.~O.~Gladkov, S.~B.~Bogdanova
\paper Analytical and Numerical Solution of the Problem on Brachistochrones in Some General Cases
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 145
\pages 114--122
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3824394}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 4
\pages 528--537
\crossref{https://doi.org/10.1007/s10958-020-04709-0}
Linking options:
  • https://www.mathnet.ru/eng/into285
  • https://www.mathnet.ru/eng/into/v145/p114
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :620
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024