|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 145, Pages 86–94
(Mi into282)
|
|
|
|
Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres
M. V. Shamolin Lomonosov Moscow State University
Abstract:
In this paper, we prove the explicit integrability of certain classes
of dynamical systems on the tangent bundles of $2$- and $3$-dimensional spheres
in the case where forces are fields with so-called variable dissipation.
Keywords:
dynamical system, dissipation, transcendental first integral, integrability.
Citation:
M. V. Shamolin, “Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145, VINITI, M., 2018, 86–94; Journal of Mathematical Sciences, 245:4 (2020), 498–507
Linking options:
https://www.mathnet.ru/eng/into282 https://www.mathnet.ru/eng/into/v145/p86
|
Statistics & downloads: |
Abstract page: | 238 | Full-text PDF : | 58 | References: | 38 | First page: | 3 |
|