Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 145, Pages 86–94 (Mi into282)  

Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres

M. V. Shamolin

Lomonosov Moscow State University
References:
Abstract: In this paper, we prove the explicit integrability of certain classes of dynamical systems on the tangent bundles of $2$- and $3$-dimensional spheres in the case where forces are fields with so-called variable dissipation.
Keywords: dynamical system, dissipation, transcendental first integral, integrability.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00848-a
This work was partially supported by the Russian Foundation for Basic Research (project No. 15-01-00848-a).
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 4, Pages 498–507
DOI: https://doi.org/10.1007/s10958-020-04706-3
Bibliographic databases:
Document Type: Article
UDC: 517.9; 531.01
MSC: 34Cxx, 37E10, 37N05
Language: Russian
Citation: M. V. Shamolin, “Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145, VINITI, M., 2018, 86–94; Journal of Mathematical Sciences, 245:4 (2020), 498–507
Citation in format AMSBIB
\Bibitem{Sha18}
\by M.~V.~Shamolin
\paper Dissipative Integrable Systems on the Tangent Bundles of $2$- and~$3$-Dimensional Spheres
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 145
\pages 86--94
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3824391}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 4
\pages 498--507
\crossref{https://doi.org/10.1007/s10958-020-04706-3}
Linking options:
  • https://www.mathnet.ru/eng/into282
  • https://www.mathnet.ru/eng/into/v145/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :58
    References:38
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024