Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 145, Pages 3–85 (Mi into281)  

This article is cited in 2 scientific papers (total in 2 papers)

Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm

A. S. Kuleshov, G. A. Chernyakov

Lomonosov Moscow State University
References:
Abstract: Investigation of various problems of mechanics and mathematical physics is reduced to the solution of second-order linear differential equations with variable coefficients. In 1986, American mathematician J. Kovacic proposed an algorithm for solution of a second-order linear differential equation in the case where the solution can be expressed in terms of so-called Liouville functions. If a linear second-order differential equation has no Liouville solutions, the Kovacic algorithm also allows to ascertain this fact. In this paper, we discuss the application of the Kovacic algorithm to the problem of the motion of a heavy body of revolution on a perfectly rough horizontal plane. The existence of Liouville solutions of the problem is examined for the cases where the rolling body is an infinitely thin disk, a disk of finite thickness, a dynamically symmetric torus, a paraboloid of revolution, and a spindle-shaped body.
Keywords: nonholonomic system, dynamically symmetric body, Kovacic algorithm, Liouville solutions.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00380
16-01-00338
This work was partially supported by the Russian Foundation for Basic Research (project Nos. 14-01-00380 and 16-01-00338).
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 4, Pages 417–497
DOI: https://doi.org/10.1007/s10958-020-04705-4
Bibliographic databases:
Document Type: Article
UDC: 517.93, 531.36, 531.384
MSC: 70E18
Language: Russian
Citation: A. S. Kuleshov, G. A. Chernyakov, “Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145, VINITI, M., 2018, 3–85; Journal of Mathematical Sciences, 245:4 (2020), 417–497
Citation in format AMSBIB
\Bibitem{KulChe18}
\by A.~S.~Kuleshov, G.~A.~Chernyakov
\paper Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 145
\pages 3--85
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into281}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3824390}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 4
\pages 417--497
\crossref{https://doi.org/10.1007/s10958-020-04705-4}
Linking options:
  • https://www.mathnet.ru/eng/into281
  • https://www.mathnet.ru/eng/into/v145/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :158
    References:37
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024