|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 144, Pages 74–80
(Mi into274)
|
|
|
|
Dimension of Extremal Boundary of the Space of Semiadditive Functionals
G.F.Djabbarov Nizami Tashkent State Pedagogical University
Abstract:
In the paper, the extremal boundary of the space of weakly additive, order-preserving, normalized, positive-homogeneous, and semiadditive functionals on a compact set is studied. The dimension of the extremal boundary of the convex compact $OS(\mathbf{n})$ is found.
Keywords:
weakly additive functional, dimension, functor.
Citation:
G.F.Djabbarov, “Dimension of Extremal Boundary of the Space of Semiadditive Functionals”, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144, VINITI, M., 2018, 74–80; Journal of Mathematical Sciences, 245:3 (2020), 368–374
Linking options:
https://www.mathnet.ru/eng/into274 https://www.mathnet.ru/eng/into/v144/p74
|
Statistics & downloads: |
Abstract page: | 125 | Full-text PDF : | 54 | References: | 18 | First page: | 8 |
|