Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 144, Pages 56–64 (Mi into272)  

Residues and Argument Principle for $A(z)$-Analytic Functions

Zh. K. Tishabaev, T. U. Otaboev, Sh. Ya. Khursanov

National University of Uzbekistan named after M. Ulugbek, Tashkent
References:
Abstract: In this paper, we obtain formulas for residues and prove analogs of the argument principle and Rouche theorems for $A(z)$-analytic functions.
Keywords: $A(z)$-analytic function, Cauchy-type kernel, $A(z)$-lemniscate.
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 3, Pages 350–358
DOI: https://doi.org/10.1007/s10958-020-04696-2
Bibliographic databases:
Document Type: Article
UDC: 517.55
MSC: Primary 35K25; Secondary 35K70, 35R35
Language: Russian
Citation: Zh. K. Tishabaev, T. U. Otaboev, Sh. Ya. Khursanov, “Residues and Argument Principle for $A(z)$-Analytic Functions”, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144, VINITI, M., 2018, 56–64; Journal of Mathematical Sciences, 245:3 (2020), 350–358
Citation in format AMSBIB
\Bibitem{TisOtaKhu18}
\by Zh.~K.~Tishabaev, T.~U.~Otaboev, Sh.~Ya.~Khursanov
\paper Residues and Argument Principle for $A(z)$-Analytic Functions
\inbook Proceedings of the International Conference «Problems of Modern Topology and its Applications»
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 144
\pages 56--64
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3829871}
\zmath{https://zbmath.org/?q=an:1450.30067}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 3
\pages 350--358
\crossref{https://doi.org/10.1007/s10958-020-04696-2}
Linking options:
  • https://www.mathnet.ru/eng/into272
  • https://www.mathnet.ru/eng/into/v144/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :105
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024