Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 143, Pages 3–23 (Mi into259)  

This article is cited in 1 scientific paper (total in 1 paper)

On certain problems of optimal control and their approximations for some non-self-adjoint elliptic equations of the convection-diffusion type

F. V. Lubyshev, A. R. Manapova

Bashkir State University, Ufa
Full-text PDF (293 kB) Citations (1)
Abstract: In this paper, we construct finite-difference approximations of optimal-control problems involving bob-self-adjoint convection-diffusion elliptic equations with discontinuous coefficients and states and examine the convergence of these approximations. Control functions in these problems are the coefficients of the convective-transfer operator in the equation of state and its right-hand side. We study the well-posedness of problems considered. For finite-difference approximations, we obtain estimates of the exactness by the state and the convergence rate by the functional and prove the weak convergence by the control. In addition, we regularize approximations in the Tikhonov sense.
Keywords: optimal-control problem, semilinear elliptic equation, non-self-adjoint operator, operator of diffusive and convective transfer, finite-difference methods.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-4147.2015.1
The work of A. R. Manapova was partially supported by the Grant of the President of the Russian Federation for Young Scientists Candidates of Science (MK-4147.2015.1).
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 1, Pages 1–22
DOI: https://doi.org/10.1007/s10958-020-04673-9
Bibliographic databases:
Document Type: Article
UDC: 519.626
MSC: 49J20, 35J61, 65N06
Language: Russian
Citation: F. V. Lubyshev, A. R. Manapova, “On certain problems of optimal control and their approximations for some non-self-adjoint elliptic equations of the convection-diffusion type”, Differential equations. Mathematical analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 143, VINITI, M., 2017, 3–23; Journal of Mathematical Sciences, 245:1 (2020), 1–22
Citation in format AMSBIB
\Bibitem{LubMan17}
\by F.~V.~Lubyshev, A.~R.~Manapova
\paper On certain problems of optimal control and their approximations for some non-self-adjoint elliptic equations of the convection-diffusion type
\inbook Differential equations. Mathematical analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 143
\pages 3--23
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801356}
\zmath{https://zbmath.org/?q=an:07248382}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1007/s10958-020-04673-9}
Linking options:
  • https://www.mathnet.ru/eng/into259
  • https://www.mathnet.ru/eng/into/v143/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:1666
    Full-text PDF :66
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024