Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 142, Pages 73–80 (Mi into254)  

Generating functions for bases in Hilbert spaces of entire functions

K. P. Isaevab, A. V. Lutsenkob, R. S. Yulmukhametovab

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b Bashkir State University, Ufa
Abstract: We prove that unconditional bases in a functional Hilbert space $H$ have a generating function if and only if the space $H$ is stable. Necessary and sufficient conditions for the stability of spaces adjoint to weighted spaces on an interval are obtained.
Keywords: Hilbert space, entire function, reproducing kernel, unconditional base.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 6, Pages 718–726
DOI: https://doi.org/10.1007/s10958-019-04457-w
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30H20, 46E22
Language: Russian
Citation: K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Generating functions for bases in Hilbert spaces of entire functions”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 142, VINITI, M., 2017, 73–80; Journal of Mathematical Sciences, 241:6 (2019), 718–726
Citation in format AMSBIB
\Bibitem{IsaLutYul17}
\by K.~P.~Isaev, A.~V.~Lutsenko, R.~S.~Yulmukhametov
\paper Generating functions for bases in Hilbert spaces of entire functions
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 142
\pages 73--80
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801350}
\zmath{https://zbmath.org/?q=an:1426.30045}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 6
\pages 718--726
\crossref{https://doi.org/10.1007/s10958-019-04457-w}
Linking options:
  • https://www.mathnet.ru/eng/into254
  • https://www.mathnet.ru/eng/into/v142/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :85
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024