Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 142, Pages 57–72 (Mi into253)  

Quasianalytic functional classes in Jordan domains of the complex plane

R. A. Gaisin

Bashkir State University, Ufa
Abstract: In this paper, we examine Carleman classes in Jordan domains of the complex plane. We obtain a quasianalyticity criterion for regular Carleman classes, which is universal for all weakly uniform domains. The proof is based on solution of the Dirichlet problem with an unbounded boundary function and a result of Beurling on the estimate of the harmonic measure.
Keywords: quasianalytic classes in Jordan domains, regular sequences, bilogarithmic quasianalyticity condition, harmonic measure, Dirichlet problem.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01661
This work was partially supported by the Russian Foundation for Basic Research (project№ 15-01-01661).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 6, Pages 701–717
DOI: https://doi.org/10.1007/s10958-019-04456-x
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D60
Language: Russian
Citation: R. A. Gaisin, “Quasianalytic functional classes in Jordan domains of the complex plane”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 142, VINITI, M., 2017, 57–72; Journal of Mathematical Sciences, 241:6 (2019), 701–717
Citation in format AMSBIB
\Bibitem{Gai17}
\by R.~A.~Gaisin
\paper Quasianalytic functional classes in Jordan domains of the complex plane
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 142
\pages 57--72
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into253}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801349}
\zmath{https://zbmath.org/?q=an:1426.30023}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 6
\pages 701--717
\crossref{https://doi.org/10.1007/s10958-019-04456-x}
Linking options:
  • https://www.mathnet.ru/eng/into253
  • https://www.mathnet.ru/eng/into/v142/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024