Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 142, Pages 28–41 (Mi into251)  

This article is cited in 2 scientific papers (total in 2 papers)

Conformally invariant inequalities

F. G. Avkhadiev

Kazan (Volga Region) Federal University
Full-text PDF (218 kB) Citations (2)
Abstract: We study conformally invariant, integral inequalities of Hardy and Rellich type in the case where the weight functions are powers of coefficients of the Poincaré metric.
Keywords: integral inequality, uniformly perfect set, Poincaré metric, conformally invariant integral.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00351а
15-41-02433
This work was supported by the Russian Foundation for Basic Fundamental Research (project № 14-01-00351а), and also with support of the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project № 15-41-02433).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 6, Pages 672–685
DOI: https://doi.org/10.1007/s10958-019-04454-z
Bibliographic databases:
Document Type: Article
UDC: 517.5; 517.956.225
MSC: 39B72; 30C20
Language: Russian
Citation: F. G. Avkhadiev, “Conformally invariant inequalities”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 142, VINITI, M., 2017, 28–41; Journal of Mathematical Sciences, 241:6 (2019), 672–685
Citation in format AMSBIB
\Bibitem{Avk17}
\by F.~G.~Avkhadiev
\paper Conformally invariant inequalities
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 142
\pages 28--41
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801347}
\zmath{https://zbmath.org/?q=an:1429.35009}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 6
\pages 672--685
\crossref{https://doi.org/10.1007/s10958-019-04454-z}
Linking options:
  • https://www.mathnet.ru/eng/into251
  • https://www.mathnet.ru/eng/into/v142/p28
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:1578
    Full-text PDF :115
    First page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024