Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 141, Pages 103–110 (Mi into247)  

This article is cited in 1 scientific paper (total in 1 paper)

On asymptotics of solutions to some linear differential equations

K. A. Mirzoeva, N. N. Konechnajab, T. A. Safonovab, R. N. Tagirovab

a Lomonosov Moscow State University
b Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
Full-text PDF (197 kB) Citations (1)
Abstract: In this paper, we find the principal asymptotic term at infinity of a certain fundamental system of solutions to the equation $l_{2n}[y]=\lambda y$ of order $2n$, where $l_{2n}$ is the product of second-order linear differential expressions and $\lambda$ is a fixed complex number. We assume that the coefficients of these differential expressions are not necessarily smooth but have a prescribed power growth at infinity. The asumptotic formulas obtained are applied for the problem on the defect index of differential operators in the case where $l_{2n}$ is a symmetric (formally self-adjoint) differential expression.
Keywords: principal asymptotic term, quasi-derivative, product of quasi-differential expressions, differential operator, defect index.
Funding agency Grant number
Russian Science Foundation 14-11-00754
Ministry of Education and Science of the Russian Federation МК-3941.2015.1
Russian Foundation for Basic Research 14-01-00349
The work of K. A. Mirzoev was supported by the Russian Science Foundation (project No. 14-11-00754). The work of T. A. Safonova was supported by the Ministry of Education and Science of the Russian Federation (grant of the President of the Russian Federation MK-3941.2015.1) and the Russian Foundation for Basic Research (project No. 14-01-00349).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 5, Pages 614–621
DOI: https://doi.org/10.1007/s10958-019-04451-2
Bibliographic databases:
Document Type: Article
UDC: 517.928, 517.984.4
MSC: 34E05, 47E05
Language: Russian
Citation: K. A. Mirzoev, N. N. Konechnaja, T. A. Safonova, R. N. Tagirova, “On asymptotics of solutions to some linear differential equations”, Differential equations. Spectral theory, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141, VINITI, M., 2017, 103–110; Journal of Mathematical Sciences, 241:5 (2019), 614–621
Citation in format AMSBIB
\Bibitem{MirKonSaf17}
\by K.~A.~Mirzoev, N.~N.~Konechnaja, T.~A.~Safonova, R.~N.~Tagirova
\paper On asymptotics of solutions to some linear differential equations
\inbook Differential equations. Spectral theory
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 141
\pages 103--110
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801342}
\zmath{https://zbmath.org/?q=an:07123837}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 5
\pages 614--621
\crossref{https://doi.org/10.1007/s10958-019-04451-2}
Linking options:
  • https://www.mathnet.ru/eng/into247
  • https://www.mathnet.ru/eng/into/v141/p103
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :89
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024