Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 141, Pages 79–85 (Mi into244)  

On the separation property of nonlinear second-order differential operators with matrix coefficients in weighted spaces

O. Kh. Karimov

Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
Abstract: We prove the separation property for a certain class of nonlinear second-order differential operators with variable matrix coefficients in weighted spaces, that, in general, are not weak perturbations of linear operators.
Keywords: weighted space, nonlinear differential operator, separation property, coercive inequality, matrix coefficient.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 5, Pages 589–595
DOI: https://doi.org/10.1007/s10958-019-04447-y
Bibliographic databases:
Document Type: Article
UDC: 517.948
MSC: 35Q40, 35J10
Language: Russian
Citation: O. Kh. Karimov, “On the separation property of nonlinear second-order differential operators with matrix coefficients in weighted spaces”, Differential equations. Spectral theory, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141, VINITI, M., 2017, 79–85; Journal of Mathematical Sciences, 241:5 (2019), 589–595
Citation in format AMSBIB
\Bibitem{Kar17}
\by O.~Kh.~Karimov
\paper On the separation property of nonlinear second-order differential operators with matrix coefficients in weighted spaces
\inbook Differential equations. Spectral theory
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 141
\pages 79--85
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801339}
\zmath{https://zbmath.org/?q=an:1423.35327}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 5
\pages 589--595
\crossref{https://doi.org/10.1007/s10958-019-04447-y}
Linking options:
  • https://www.mathnet.ru/eng/into244
  • https://www.mathnet.ru/eng/into/v141/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :65
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024