|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 141, Pages 42–47
(Mi into241)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Convergence of eigenelements of a Steklov-type problem in a half-band with a small hole
D. B. Davletova, O. B. Davletovb a Bashkir State Pedagogical University, Ufa
b Ufa State Petroleum Technological University
Abstract:
We consider a Steklov-type problem for the Laplace operator in a half-band containing a small hole. On the lateral boundaries and the boundary of the hole, the Dirichlet conditions are stated, and on the base of the half-band the Steklov spectral condition. We prove that eigenvalues of this problem tend to zero as the small parameter (the “diameter” of the hole) vanishes.
Keywords:
half-band, Steklov problem, eigenvalue, singular perturbation, small hole, convergence.
Citation:
D. B. Davletov, O. B. Davletov, “Convergence of eigenelements of a Steklov-type problem in a half-band with a small hole”, Differential equations. Spectral theory, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141, VINITI, M., 2017, 42–47; Journal of Mathematical Sciences, 241:5 (2019), 549–555
Linking options:
https://www.mathnet.ru/eng/into241 https://www.mathnet.ru/eng/into/v141/p42
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 56 | First page: | 8 |
|