Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 140, Pages 78–87 (Mi into236)  

This article is cited in 3 scientific papers (total in 3 papers)

On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University
Full-text PDF (215 kB) Citations (3)
Abstract: Let ${\mathcal M}$ be the von Neumann algebra of operators in a Hilbert space $\mathcal H$ and $\tau$ be an exact normal semi-finite trace on $\mathcal{M}$. We obtain inequalities for permutations of products of $\tau$-measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of $\tau$-measurable operators and a sufficient condition of orthogonality of certain nonnegative $\tau$-measurable operators. We state sufficient conditions of the $\tau$-compactness of products of self-adjoint $\tau$-measurable operators and obtain a criterion of the $\tau$-compactness of the product of a nonnegative $\tau$-measurable operator and an arbitrary $\tau$-measurable operator. We present an example that shows that the nonnegativity of one of factors is substantial. We also state a criterion of the elementary nature of the product of nonnegative operators from $\mathcal{M}$. All results are new for the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ endowed with the canonical trace $\tau=\operatorname{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semi-finite trace, $\tau$-measurable operator, $\tau$-compact operator, elementary operator, nilpotent, permutation, submajorization.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 4, Pages 458–468
DOI: https://doi.org/10.1007/s10958-019-04437-0
Bibliographic databases:
Document Type: Article
UDC: 517.983, 517.986
MSC: 47C15, 46L51
Language: Russian
Citation: A. M. Bikchentaev, “On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 78–87; Journal of Mathematical Sciences, 241:4 (2019), 458–468
Citation in format AMSBIB
\Bibitem{Bik17}
\by A.~M.~Bikchentaev
\paper On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 140
\pages 78--87
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799897}
\zmath{https://zbmath.org/?q=an:07123802}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 458--468
\crossref{https://doi.org/10.1007/s10958-019-04437-0}
Linking options:
  • https://www.mathnet.ru/eng/into236
  • https://www.mathnet.ru/eng/into/v140/p78
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024