Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 140, Pages 68–77 (Mi into235)  

Inequalities involving fractional integrals of a function and its derivative

R. G. Nasibullin

Kazan (Volga Region) Federal University
Abstract: New inequalities for fractional integrals of a function and its derivative are proved. Lower estimates of weighted norms of the derivative through fractional Riemann–Liouville integrals are obtained.
Keywords: Hardy inequality, fractional Riemann–Liouville integral, Bessel function.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00351-а
15-41-02433
This work was supported by the Russian Foundation for Basic Research (project No. 14-01-00351-a) and the joint grant of the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan No. 15-41-02433.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 4, Pages 448–457
DOI: https://doi.org/10.1007/s10958-019-04436-1
Bibliographic databases:
Document Type: Article
UDC: 517.5, 517.956.225
MSC: 26D15, 46E30
Language: Russian
Citation: R. G. Nasibullin, “Inequalities involving fractional integrals of a function and its derivative”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 68–77; Journal of Mathematical Sciences, 241:4 (2019), 448–457
Citation in format AMSBIB
\Bibitem{Nas17}
\by R.~G.~Nasibullin
\paper Inequalities involving fractional integrals of a function and its derivative
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 140
\pages 68--77
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799896}
\zmath{https://zbmath.org/?q=an:1426.26037}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 448--457
\crossref{https://doi.org/10.1007/s10958-019-04436-1}
Linking options:
  • https://www.mathnet.ru/eng/into235
  • https://www.mathnet.ru/eng/into/v140/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024