Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 139, Pages 114–127 (Mi into229)  

This article is cited in 1 scientific paper (total in 1 paper)

Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem

M. G. Yumagulov

Bashkir State University, Ufa
Full-text PDF (255 kB) Citations (1)
Abstract: In this paper, we construct stability regions (in the linear approximation) of triangular libration points for the planar, bounded, elliptical three-body problem and examine bifurcations that occur when parameters of the system pass through the boundaries of these regions. A new scheme for the construction of stability regions is presented, which leads to approximation formulas describing these boundaries. We prove that on one part of the boundary, the main scenario of bifurcation is the appearance of nonstationary $4\pi$-periodic solutions that are close to a triangular libration point, whereas on the other part, the main scenario is the appearance of quasiperiodic solutions.
Keywords: three-body problem, libration point, stability, stability region, bifurcation, periodic solutions, parameter.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 3, Pages 364–378
DOI: https://doi.org/10.1007/s10958-019-04430-7
Bibliographic databases:
Document Type: Article
UDC: 517.923, 517.925.52
MSC: 35B32
Language: Russian
Citation: M. G. Yumagulov, “Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139, VINITI, M., 2017, 114–127; Journal of Mathematical Sciences, 241:3 (2019), 364–378
Citation in format AMSBIB
\Bibitem{Yum17}
\by M.~G.~Yumagulov
\paper Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 139
\pages 114--127
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799911}
\zmath{https://zbmath.org/?q=an:07139908}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 3
\pages 364--378
\crossref{https://doi.org/10.1007/s10958-019-04430-7}
Linking options:
  • https://www.mathnet.ru/eng/into229
  • https://www.mathnet.ru/eng/into/v139/p114
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024