Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 139, Pages 79–90 (Mi into226)  

This article is cited in 1 scientific paper (total in 1 paper)

Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point

A. B. Rasulov, M. A. Bobojanova, Yu. S. Fedorov

National Research University "Moscow Power Engineering Institute"
Full-text PDF (211 kB) Citations (1)
Abstract: We examine a generalized Cauchy–Riemann-type system whose coefficients have singularities, construct the resolvent of the corresponding integral equation, and find an integral representation of the general solution.
Keywords: generalized Cauchy–Riemann-type system, singular integral equation, Hilbert problem.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 3, Pages 327–339
DOI: https://doi.org/10.1007/s10958-019-04427-2
Bibliographic databases:
Document Type: Article
UDC: 517.926.2
MSC: 35F15
Language: Russian
Citation: A. B. Rasulov, M. A. Bobojanova, Yu. S. Fedorov, “Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139, VINITI, M., 2017, 79–90; Journal of Mathematical Sciences, 241:3 (2019), 327–339
Citation in format AMSBIB
\Bibitem{RasBobFed17}
\by A.~B.~Rasulov, M.~A.~Bobojanova, Yu.~S.~Fedorov
\paper Hilbert problem for the Cauchy--Riemann equation with a singular circle and a singular point
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 139
\pages 79--90
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799908}
\zmath{https://zbmath.org/?q=an:1433.30116}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 3
\pages 327--339
\crossref{https://doi.org/10.1007/s10958-019-04427-2}
Linking options:
  • https://www.mathnet.ru/eng/into226
  • https://www.mathnet.ru/eng/into/v139/p79
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024