Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 139, Pages 70–78 (Mi into225)  

On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity

A. V. Vasilyev, A. V. Parusnikova

National Research University "Higher School of Economics" (HSE), Moscow
Abstract: We examine asymptotic expansions of the third Painlevé transcendents for $\alpha \delta \ne 0$ and $\gamma=0$ in a neighborhood of infinity in a sector of aperture ${<}2 \pi$ by the method of dominant balance). We compare intermediate results with results obtained by methods of three-dimensional power geometry. We find possible asymptotics in terms of elliptic functions, construct a power series, which represents an asymptotic expansion of a solution to the third Painlevé equation in a certain sector, estimate the aperture of this sector, and obtain a recurrent relation for the coefficients of the series.
Keywords: Painlevé equations, Newton polygon, asymptotic expansion, Gevrey order.
Funding agency Grant number
Russian Foundation for Basic Research 16-51-150005 НЦНИ\_а
This work was partially supported by the Russian Foundation for Basic Research (project No. 16-51-150005 CNRS_a)
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 3, Pages 318–326
DOI: https://doi.org/10.1007/s10958-019-04426-3
Bibliographic databases:
Document Type: Article
UDC: 517.925.54, 517.928.1
MSC: 34M25, 34M55
Language: Russian
Citation: A. V. Vasilyev, A. V. Parusnikova, “On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139, VINITI, M., 2017, 70–78; Journal of Mathematical Sciences, 241:3 (2019), 318–326
Citation in format AMSBIB
\Bibitem{VasPar17}
\by A.~V.~Vasilyev, A.~V.~Parusnikova
\paper On various approaches to asymptotics of solutions to the third Painlev\'e equation in a neighborhood of infinity
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 139
\pages 70--78
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into225}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799907}
\zmath{https://zbmath.org/?q=an:1434.34078}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 3
\pages 318--326
\crossref{https://doi.org/10.1007/s10958-019-04426-3}
Linking options:
  • https://www.mathnet.ru/eng/into225
  • https://www.mathnet.ru/eng/into/v139/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024