Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 139, Pages 15–38 (Mi into221)  

This article is cited in 7 scientific papers (total in 7 papers)

Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces

L. M. Kozhevnikovaab

a Sterlitamak Branch of Bashkir State University
b Elabuga Branch of Kazan (Volga Region) Federal University
Full-text PDF (322 kB) Citations (7)
Abstract: We consider the Dirichlet problem in an arbitrary unbounded domain with inhomogeneous boundary conditions for a certain class of anisotropic elliptic equations whose right-hand sides belong to the class $L_1$ and prove the existence of entropic solutions in anisotropic Sobolev–Orlicz spaces.
Keywords: anisotropic elliptic equation, entropic solution, existence of solution, Sobolev–Orlicz space, $N$-function, pseudo-monotonic operator.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 3, Pages 258–284
DOI: https://doi.org/10.1007/s10958-019-04422-7
Bibliographic databases:
Document Type: Article
UDC: 517.956.25
MSC: 35J25, 35J62, 35D30
Language: Russian
Citation: L. M. Kozhevnikova, “Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139, VINITI, M., 2017, 15–38; Journal of Mathematical Sciences, 241:3 (2019), 258–284
Citation in format AMSBIB
\Bibitem{Koz17}
\by L.~M.~Kozhevnikova
\paper Existence of entropic solutions of elliptic problem in anisotropic Sobolev--Orlicz spaces
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 139
\pages 15--38
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799903}
\zmath{https://zbmath.org/?q=an:1427.35055}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 3
\pages 258--284
\crossref{https://doi.org/10.1007/s10958-019-04422-7}
Linking options:
  • https://www.mathnet.ru/eng/into221
  • https://www.mathnet.ru/eng/into/v139/p15
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024