Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 139, Pages 9–14 (Mi into220)  

Description of functionals that are minimized by $\Phi$-triangulations

V. A. Klyachin, E. G. Grigorieva

Volgograd State University
Abstract: We obtain condition for a function $f$ defined on the set of simplexes $S$ under which the values $F(T)=\sum\limits_{S\in T}f(S)$ or $F_f^m(T)=\max\limits_{S\in T}f(S)$ are minimal for $\Phi$-triangulations of $T$. As consequences, we also obtain certain extremal properties of the classical Delaunay triangulation.
Keywords: triangulation, Delaunay condition, empty sphere, functional.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517-Поволжье-а
This work was partially supported by the Russian Foundation for Basic Research (project No. 15-41-02517-Volga Region).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 3, Pages 251–257
DOI: https://doi.org/10.1007/s10958-019-04421-8
Bibliographic databases:
Document Type: Article
UDC: 514.142.2, 514.174.6
MSC: 52B55, 68U05
Language: Russian
Citation: V. A. Klyachin, E. G. Grigorieva, “Description of functionals that are minimized by $\Phi$-triangulations”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139, VINITI, M., 2017, 9–14; Journal of Mathematical Sciences, 241:3 (2019), 251–257
Citation in format AMSBIB
\Bibitem{KlyGri17}
\by V.~A.~Klyachin, E.~G.~Grigorieva
\paper Description of functionals that are minimized by $\Phi$-triangulations
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 139
\pages 9--14
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799902}
\zmath{https://zbmath.org/?q=an:1433.52016}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 3
\pages 251--257
\crossref{https://doi.org/10.1007/s10958-019-04421-8}
Linking options:
  • https://www.mathnet.ru/eng/into220
  • https://www.mathnet.ru/eng/into/v139/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024