Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 137, Pages 104–117 (Mi into208)  

This article is cited in 1 scientific paper (total in 1 paper)

New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics
Full-text PDF (231 kB) Citations (1)
Abstract: In many problems of multidimensional dynamics, systems appear whose state spaces are spheres of finite dimension. Clearly, phase spaces of such systems are tangent bundles of these spheres. In this paper, we examine nonconservative force field in the dynamics of a multidimensional rigid body in which the system possesses a complete set of first integrals that can be expressed as finite combinations of elementary transcendental functions. We consider the case where the moment of nonconservative forces depends on the tensor of angular velocity.
Keywords: dynamical system, dissipation, transcendental first integral, integrability.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00848-a
This work was supported by the Russian Foundation for Basic Research (project No. 15-01-00848-a).
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 6, Pages 687–701
DOI: https://doi.org/10.1007/s10958-018-4140-2
Bibliographic databases:
Document Type: Article
UDC: 517, 531.01
MSC: 34Cxx, 37E10, 37N05
Language: Russian
Citation: M. V. Shamolin, “New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 104–117; J. Math. Sci. (N. Y.), 236:6 (2019), 687–701
Citation in format AMSBIB
\Bibitem{Sha17}
\by M.~V.~Shamolin
\paper New cases of integrable systems with dissipation on tangent bundles of multidimensional spheres
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 137
\pages 104--117
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801263}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 6
\pages 687--701
\crossref{https://doi.org/10.1007/s10958-018-4140-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059479868}
Linking options:
  • https://www.mathnet.ru/eng/into208
  • https://www.mathnet.ru/eng/into/v137/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :73
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024