|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 137, Pages 97–103
(Mi into207)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Vortex steady planar entropic flows of ideal gases
S. V. Khabirov Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
Abstract:
We find all solutions to the submodel of vortex, steady, planar, barotropic, entropic flows of an ideal gas and show that possible motions are exhausted by rectilinear motions under a constant pressure and motions along concentric circles. We present a group classification of the model of planar, vortex, entropic, nonbarotropic flows, examine invariant submodels, and propose a physical interpretation of certain solutions.
Keywords:
vortex flow, group analysis, optimal system of subalgebras, invariant solution.
Citation:
S. V. Khabirov, “Vortex steady planar entropic flows of ideal gases”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 97–103; J. Math. Sci. (N. Y.), 236:6 (2019), 679–686
Linking options:
https://www.mathnet.ru/eng/into207 https://www.mathnet.ru/eng/into/v137/p97
|
|