Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 137, Pages 97–103 (Mi into207)  

This article is cited in 2 scientific papers (total in 2 papers)

Vortex steady planar entropic flows of ideal gases

S. V. Khabirov

Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
Full-text PDF (159 kB) Citations (2)
Abstract: We find all solutions to the submodel of vortex, steady, planar, barotropic, entropic flows of an ideal gas and show that possible motions are exhausted by rectilinear motions under a constant pressure and motions along concentric circles. We present a group classification of the model of planar, vortex, entropic, nonbarotropic flows, examine invariant submodels, and propose a physical interpretation of certain solutions.
Keywords: vortex flow, group analysis, optimal system of subalgebras, invariant solution.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-97027-a
Ministry of Education and Science of the Russian Federation 8146.2016
This work was supported by the Russian Foundation for Basic Research (project No. 14-01-97027-a) and the Program for Support of Leading Scientific Schools (project No. NSh-8146.2016).
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 6, Pages 679–686
DOI: https://doi.org/10.1007/s10958-018-4139-8
Bibliographic databases:
Document Type: Article
UDC: 517.958, 533.7
MSC: 37N10, 76N15, 76U05
Language: Russian
Citation: S. V. Khabirov, “Vortex steady planar entropic flows of ideal gases”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 97–103; J. Math. Sci. (N. Y.), 236:6 (2019), 679–686
Citation in format AMSBIB
\Bibitem{Kha17}
\by S.~V.~Khabirov
\paper Vortex steady planar entropic flows of ideal gases
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 137
\pages 97--103
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801262}
\zmath{https://zbmath.org/?q=an:1411.37065}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 6
\pages 679--686
\crossref{https://doi.org/10.1007/s10958-018-4139-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059468942}
Linking options:
  • https://www.mathnet.ru/eng/into207
  • https://www.mathnet.ru/eng/into/v137/p97
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :59
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024