Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 137, Pages 82–96 (Mi into206)  

This article is cited in 2 scientific papers (total in 2 papers)

On analytical in a sector resolving families of operators for strongly degenerate evolution equations of higher and fractional orders

V. E. Fedorovab, E. A. Romanovaa

a Chelyabinsk State University
b South Ural State University, Chelyabinsk
Full-text PDF (262 kB) Citations (2)
Abstract: In this paper, we study a class of linear evolution equations of fractional order that are degenerate on the kernel of the operator under the sign of the derivative and on its relatively generalized eigenvectors. We prove that in the case considered, in contrast to the case of first-order degenerate equations and equations of fractional order with weak degeneration (i.e., degeneration only on the kernel of the operator under the sign of the derivative), the family of analytical in a sector operators does not vanish on relative generalized eigenspaces of the operator under the sign of the derivative, has a singularity at zero, and hence does not determine any solution of a strongly degenerate equation of fractional order. For the case of a strongly degenerate equation of integer order this fact does not holds, but the behavior of the family of resolving operators at zero cannot be examined by ordinary method.
Keywords: degenerate evolution equation, differential equation of fractional order, analytical in a sector resolving family of operators, initial-boundary-value problem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0020
This work was supported by the Laboratory of Quantum Topology of the Chelyabinsk State University (grant of the Government of the Russian Federation No. 14.Z50.31.0020).
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 6, Pages 663–678
DOI: https://doi.org/10.1007/s10958-018-4138-9
Bibliographic databases:
Document Type: Article
UDC: 517.986.7
MSC: 34G10, 34A08, 35R11
Language: Russian
Citation: V. E. Fedorov, E. A. Romanova, “On analytical in a sector resolving families of operators for strongly degenerate evolution equations of higher and fractional orders”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 82–96; J. Math. Sci. (N. Y.), 236:6 (2019), 663–678
Citation in format AMSBIB
\Bibitem{FedRom17}
\by V.~E.~Fedorov, E.~A.~Romanova
\paper On analytical in a sector resolving families of operators for strongly degenerate evolution equations of higher and fractional orders
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 137
\pages 82--96
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801261}
\zmath{https://zbmath.org/?q=an:1417.34010}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 6
\pages 663--678
\crossref{https://doi.org/10.1007/s10958-018-4138-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059476829}
Linking options:
  • https://www.mathnet.ru/eng/into206
  • https://www.mathnet.ru/eng/into/v137/p82
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025