Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 137, Pages 26–60 (Mi into204)  

This article is cited in 13 scientific papers (total in 13 papers)

Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type

K. B. Sabitov, S. N. Sidorov

Institute of Applied Research, Sterlitamak
Abstract: We consider initial-boundary-value problems for three classes of inhomogeneous degenerate equations of mixed parabolic-hyperbolic type: mixed-type equations with degenerate hyperbolic part, mixed-type equations with degenerate parabolic part, and mixed-type equations with power degeneration. In each case, we state a criterion of uniqueness of a solution to the problem. We construct solutions as series with respect to the system of eigenfunctions of the corresponding one-dimensional spectral problem. We prove that the uniqueness of the solution and the convergence of the series depend on the ratio of sides of the rectangular from the hyperbolic part of the mixed domain. In the proof of the existence of solutions to the problem, small denominators appear that impair the convergence of series constructed. In this connection, we obtain estimates of small denominators separated from zero and the corresponding asymptotics, which allows us, under certain conditions, to prove that the solution constructed belongs to the class of regular solutions.
Keywords: mixed parabolic-hyperbolic equation, initial-boundary-value problem, spectral method, uniqueness, existence, series, small denominators, uniform convergence.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-97003
This work is supported by the Russian Foundation for Basic Research (project Volga Region No. 14-01-97003).
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 6, Pages 603–640
DOI: https://doi.org/10.1007/s10958-018-4136-y
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35M10, 35Q60
Language: Russian
Citation: K. B. Sabitov, S. N. Sidorov, “Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 26–60; J. Math. Sci. (N. Y.), 236:6 (2019), 603–640
Citation in format AMSBIB
\Bibitem{SabSid17}
\by K.~B.~Sabitov, S.~N.~Sidorov
\paper Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 137
\pages 26--60
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801259}
\zmath{https://zbmath.org/?q=an:1414.35132}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 6
\pages 603--640
\crossref{https://doi.org/10.1007/s10958-018-4136-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059456344}
Linking options:
  • https://www.mathnet.ru/eng/into204
  • https://www.mathnet.ru/eng/into/v137/p26
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :183
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024