Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 135, Pages 94–122 (Mi into196)  

This article is cited in 3 scientific papers (total in 3 papers)

Phase portraits of dynamical equations of motion of a rigid body in a resistive medium

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics
Abstract: We consider a mathematical model of the influence of a medium on a rigid body with a specific shape of its surface. In this model, we take into account the additional dependence of the moment of the interaction force on the angular velocity of the body. We present a complete system of equations of motion under the quasi-stationarity conditions. The dynamical part of equations of motion forms an independent third-order system, which contains, in its turn, an independent second-order subsystem. We obtain a new family of phase portraits on the phase cylinder of quasi-velocities, which differs from families obtained earlier.
Keywords: phase portrait, quasi-stationarity, integrable system, transcendent first integral.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00848_а
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 233, Issue 3, Pages 398–425
DOI: https://doi.org/10.1007/s10958-018-3935-5
Bibliographic databases:
Document Type: Article
UDC: 531.01+531.552
MSC: 34Cxx, 37E10, 37N05
Language: Russian
Citation: M. V. Shamolin, “Phase portraits of dynamical equations of motion of a rigid body in a resistive medium”, Dynamical systems, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 135, VINITI, Moscow, 2017, 94–122; J. Math. Sci. (N. Y.), 233:3 (2018), 398–425
Citation in format AMSBIB
\Bibitem{Sha17}
\by M.~V.~Shamolin
\paper Phase portraits of dynamical equations of motion of a rigid body in a resistive medium
\inbook Dynamical systems
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 135
\pages 94--122
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3805814}
\zmath{https://zbmath.org/?q=an:06945091}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 233
\issue 3
\pages 398--425
\crossref{https://doi.org/10.1007/s10958-018-3935-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049918709}
Linking options:
  • https://www.mathnet.ru/eng/into196
  • https://www.mathnet.ru/eng/into/v135/p94
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025