Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 132, Pages 131–134 (Mi into182)  

This article is cited in 1 scientific paper (total in 1 paper)

Ûmooth solutions to some differential-difference equations

V. B. Cherepennikov

L. A. Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (255 kB) Citations (1)
Abstract: In this paper, we consider a scalar linear differential-difference equation (LDDE) of neutral type $\dot{x}(t)+p(t)\dot{x}(t-1)=a(t)x(t-1)+f(t)$. We examine the initial-value problem with an initial function in the case where the initial condition is given on an initial set. We use the method of polynomial quasisolutions based on the representation of the unknown function $x(t)$ in the form of a polynomial of degree $N$. Substituting this function in the original equation we obtain the discrepancy $\Delta(t)=O(t^{N})$, for which an exact analytic representation is obtained. We prove that if a polynomial quasisolution of degree $N$ is taken as an initial function, then the smoothness of the solution generated by this initial functions at connection points in no less than $N$.
Keywords: differential-difference equation, initial-value problem with an initial function, polynomial quasisolution, smooth solution.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 5, Pages 786–789
DOI: https://doi.org/10.1007/s10958-018-3790-4
Bibliographic databases:
Document Type: Article
UDC: 517.929
MSC: 34K15
Language: Russian
Citation: V. B. Cherepennikov, “Ûmooth solutions to some differential-difference equations”, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 131–134; J. Math. Sci. (N. Y.), 230:5 (2018), 786–789
Citation in format AMSBIB
\Bibitem{Che17}
\by V.~B.~Cherepennikov
\paper Ûmooth solutions to some differential-difference equations
\inbook Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 131--134
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801402}
\zmath{https://zbmath.org/?q=an:1392.34077}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 786--789
\crossref{https://doi.org/10.1007/s10958-018-3790-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044481977}
Linking options:
  • https://www.mathnet.ru/eng/into182
  • https://www.mathnet.ru/eng/into/v132/p131
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :43
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024