Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 132, Pages 117–121 (Mi into179)  

This article is cited in 5 scientific papers (total in 5 papers)

Oscillation, rotation, and wandering of solutions to linear differential systems

I. N. Sergeev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (266 kB) Citations (5)
Abstract: For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Keywords: differential equation, linear system, autonomous system, zeros of solution, oscillation, rotation, wandering, characteristic exponent.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 5, Pages 770–774
DOI: https://doi.org/10.1007/s10958-018-3787-z
Bibliographic databases:
Document Type: Article
UDC: 517.926.4, 517.925.56
MSC: 34C10, 34D08
Language: Russian
Citation: I. N. Sergeev, “Oscillation, rotation, and wandering of solutions to linear differential systems”, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 117–121; J. Math. Sci. (N. Y.), 230:5 (2018), 770–774
Citation in format AMSBIB
\Bibitem{Ser17}
\by I.~N.~Sergeev
\paper Oscillation, rotation, and wandering of solutions to linear differential systems
\inbook Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 117--121
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801399}
\zmath{https://zbmath.org/?q=an:1393.34025}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 770--774
\crossref{https://doi.org/10.1007/s10958-018-3787-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044443023}
Linking options:
  • https://www.mathnet.ru/eng/into179
  • https://www.mathnet.ru/eng/into/v132/p117
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :68
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024