Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 132, Pages 101–104 (Mi into175)  

Spectral set of a linear system with discrete time

S. N. Popovaab, I. N. Banshchikovabc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Udmurt State University, Izhevsk
c Izhevsk State Agricultural Academy
Abstract: Fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ of a discrete linear homogeneous system of the form
\begin{equation*} x(m+1)=A(m)x(m),\quad m\in\mathbb N,\quad x\in\mathbb R^n, \end{equation*}
where the matrix $A(\cdot)$ is completely bounded on $\mathbb N$. The spectral set of this system corresponding to a given class of perturbations is the collection of complete spectra of the Lyapunov exponents of perturbed systems when perturbations runs over the whole class considered. In this paper, we examine the class ${\mathcal R}$ of multiplicative perturbations of the form
\begin{equation*} y(m+1)=A(m)R(m)x(m),\quad m\in\mathbb N,\quad y\in\mathbb R^n, \end{equation*}
where the matrix $R(\cdot)$ is completely bounded on $\mathbb N$. We obtain conditions that guarantee the coincidence of the spectral set $\lambda({\mathcal R})$ corresponding to the class ${\mathcal R}$ with the set of all nondecreasing tuples of $n$ numbers.
Keywords: linear system with discrete time, Lyapunov exponent, perturbation of coefficients.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346_à
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 5, Pages 752–756
DOI: https://doi.org/10.1007/s10958-018-3783-3
Bibliographic databases:
Document Type: Article
UDC: 517.929.2
MSC: 39A06, 39A30
Language: Russian
Citation: S. N. Popova, I. N. Banshchikova, “Spectral set of a linear system with discrete time”, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 101–104; J. Math. Sci. (N. Y.), 230:5 (2018), 752–756
Citation in format AMSBIB
\Bibitem{PopBan17}
\by S.~N.~Popova, I.~N.~Banshchikova
\paper Spectral set of a linear system with discrete time
\inbook Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 101--104
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801395}
\zmath{https://zbmath.org/?q=an:1391.39004}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 752--756
\crossref{https://doi.org/10.1007/s10958-018-3783-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044478384}
Linking options:
  • https://www.mathnet.ru/eng/into175
  • https://www.mathnet.ru/eng/into/v132/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :48
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024