Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 132, Pages 68–73 (Mi into168)  

Oscillation criterion for autonomous differential equations with bounded aftereffect

V. V. Malygina

Perm State National Research Polytechnical University
Abstract: For autonomous functional-differential equations with delays, we obtain an oscillation criterion, which allows one to reduce the oscillation problem to the calculation of a unique root of a real-valued function determined by the coefficients of the original equation. The criterion is illustrated by examples of equations with concentrated and distributed aftereffect, for which convenient oscillation tests are obtained.
Keywords: differential equation with aftereffect, oscillation, concentrated and distributed delay.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1890, áàçîâàÿ ÷àñòü çàäàíèÿ 2014/152
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 5, Pages 717–723
DOI: https://doi.org/10.1007/s10958-018-3776-2
Bibliographic databases:
Document Type: Article
UDC: 517.929
MSC: 34K06, 34K11
Language: Russian
Citation: V. V. Malygina, “Oscillation criterion for autonomous differential equations with bounded aftereffect”, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 68–73; J. Math. Sci. (N. Y.), 230:5 (2018), 717–723
Citation in format AMSBIB
\Bibitem{Mal17}
\by V.~V.~Malygina
\paper Oscillation criterion for autonomous differential equations with bounded aftereffect
\inbook Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 68--73
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801388}
\zmath{https://zbmath.org/?q=an:1392.34083}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 717--723
\crossref{https://doi.org/10.1007/s10958-018-3776-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044450132}
Linking options:
  • https://www.mathnet.ru/eng/into168
  • https://www.mathnet.ru/eng/into/v132/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024