Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 132, Pages 61–63 (Mi into166)  

On a certain first-order differential equation with delay

A. S. Larionov

Bratsk State University
Abstract: We consider the Cauchy problem for a first-order quasilinear differential equation with delayed argument of neutral type, and obtain sufficient conditions of the existence and uniqueness of its solutions. Proofs of the solvability of nonlinear problems, estimates of solutions, and constructions of approximate methods are based on Chaplygin-type theorems on differential inequalities.
Keywords: differential equation, delay , monotonic operator, problem Cauchy, solvability.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 5, Pages 708–711
DOI: https://doi.org/10.1007/s10958-018-3774-4
Bibliographic databases:
Document Type: Article
UDC: 517.927.4, 517.929.7
MSC: 34K10, 34K40
Language: Russian
Citation: A. S. Larionov, “On a certain first-order differential equation with delay”, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 61–63; J. Math. Sci. (N. Y.), 230:5 (2018), 708–711
Citation in format AMSBIB
\Bibitem{Lar17}
\by A.~S.~Larionov
\paper On a certain first-order differential equation with delay
\inbook Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 61--63
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801386}
\zmath{https://zbmath.org/?q=an:1393.34078}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 708--711
\crossref{https://doi.org/10.1007/s10958-018-3774-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044451397}
Linking options:
  • https://www.mathnet.ru/eng/into166
  • https://www.mathnet.ru/eng/into/v132/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :56
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024