Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 233, Pages 37–45
DOI: https://doi.org/10.36535/2782-4438-2024-233-37-45
(Mi into1277)
 

On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity

A. N. Naimov, M. V. Bystretskii

Vologda State University
References:
Abstract: In this paper, we examine the solvability of a periodic problem for a system of ordinary differential equations whose principal nonlinear part is a quasi-homogeneous mapping. We prove that if an unperturbed system with quasi-homogeneous nonlinearity has no nonzero bounded solutions, then the periodic problem admits an a priori estimate. The results obtained are of interest from the point of view of the application and development of methods of nonlinear analysis in the theory of differential and integral equations.
Keywords: periodic problem, quasi-homogeneous nonlinearity, a priori estimate, vector field, rotation of a vector field, homotopic vector fields
Funding agency Grant number
Russian Science Foundation 23-21-00032
This work was supported by the Russian Science Foundation (project No. 23-21-00032).
Document Type: Article
UDC: 517.927.4; 517.988.63
MSC: 34C25, 47H11, 55M25
Language: Russian
Citation: A. N. Naimov, M. V. Bystretskii, “On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233, VINITI, Moscow, 2024, 37–45
Citation in format AMSBIB
\Bibitem{NaiBys24}
\by A.~N.~Naimov, M.~V.~Bystretskii
\paper On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 233
\pages 37--45
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1277}
\crossref{https://doi.org/10.36535/2782-4438-2024-233-37-45}
Linking options:
  • https://www.mathnet.ru/eng/into1277
  • https://www.mathnet.ru/eng/into/v233/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:32
    Full-text PDF :24
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024