Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 232, Pages 99–121
DOI: https://doi.org/10.36535/2782-4438-2024-232-99-121
(Mi into1270)
 

Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential

V. S. Rykhlov

Saratov State University
References:
Abstract: We study the initial-boundary-value problem in a half-strip for a second-order inhomogeneous hyperbolic equation with constant coefficients and a nonzero potential containing a mixed derivative. The equation considered is the equation of transverse vibrations of a moving finite string. The problems with general initial conditions (nonzero string profile and nonzero initial velocity of string points) and fixed ends (Dirichlet conditions) are examined. Theorems on the existence and uniqueness of a solution are formulated and formulas for the solution are obtained.
Keywords: partial differential equation, nonzero potential, wave equation, hyperbolic equation, mixed derivative, generalized solution
Document Type: Article
UDC: 517.958, 517.956.32
MSC: 35L20
Language: Russian
Citation: V. S. Rykhlov, “Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232, VINITI, Moscow, 2024, 99–121
Citation in format AMSBIB
\Bibitem{Ryk24}
\by V.~S.~Rykhlov
\paper Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 232
\pages 99--121
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1270}
\crossref{https://doi.org/10.36535/2782-4438-2024-232-99-121}
Linking options:
  • https://www.mathnet.ru/eng/into1270
  • https://www.mathnet.ru/eng/into/v232/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:27
    Full-text PDF :19
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024