Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 230, Pages 8–24
DOI: https://doi.org/10.36535/0233-6723-2023-230-8-24
(Mi into1241)
 

Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space

G. A. Akishev

Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
References:
Abstract: In this paper, we consider the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ of $2\pi$-periodic functions of several variables, the best “angular” approximation of such functions by trigonometric polynomials, and the mixed smoothness modulus of functions from this space. The properties of the mixed smoothness modulus are given and strengthened versions of the direct and inverse theorems on the “angular” approximations are proved.
Keywords: Lorentz space, trigonometric polynomial, best “angular” approximation, smoothness modulus
Document Type: Article
UDC: 517.51
MSC: 41A10, MSC 41A25, 42A05
Language: Russian
Citation: G. A. Akishev, “Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230, VINITI, Moscow, 2023, 8–24
Citation in format AMSBIB
\Bibitem{Aki23}
\by G.~A.~Akishev
\paper Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 230
\pages 8--24
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1241}
\crossref{https://doi.org/10.36535/0233-6723-2023-230-8-24}
Linking options:
  • https://www.mathnet.ru/eng/into1241
  • https://www.mathnet.ru/eng/into/v230/p8
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :35
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024