Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 228, Pages 52–57
DOI: https://doi.org/10.36535/0233-6723-2023-228-52-57
(Mi into1226)
 

Recovery of the Laplace–Bessel operator of a function by the spectrum, which is specified not everywhere

S. M. Sitnika, M. V. Polovinkinab, V. E. Fedorovcd, I. P. Polovinkina

a National Research University "Belgorod State University"
b Voronezh State University of Engineering Technologies
c N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
d Chelyabinsk State University
References:
Abstract: In this paper, we present results related to the problem of the best recovery of a fractional power of the $B$-elliptic Laplace–Bessel operator of a smooth function from its Fourier–Bessel transform, which is known exactly or approximately on a certain convex set. The cases of primary estimates in $L_2^\gamma$ and $L_\infty$ are considered.
Keywords: Bessel operator, optimal recovery, extremal problem, Fourier–Bessel transform
Document Type: Article
UDC: 517.444, 517.9
Language: Russian
Citation: S. M. Sitnik, M. V. Polovinkina, V. E. Fedorov, I. P. Polovinkin, “Recovery of the Laplace–Bessel operator of a function by the spectrum, which is specified not everywhere”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228, VINITI, Moscow, 2023, 52–57
Citation in format AMSBIB
\Bibitem{SitPolFed23}
\by S.~M.~Sitnik, M.~V.~Polovinkina, V.~E.~Fedorov, I.~P.~Polovinkin
\paper Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
\inbook Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 228
\pages 52--57
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1226}
\crossref{https://doi.org/10.36535/0233-6723-2023-228-52-57}
Linking options:
  • https://www.mathnet.ru/eng/into1226
  • https://www.mathnet.ru/eng/into/v228/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :26
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024