Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 228, Pages 3–9
DOI: https://doi.org/10.36535/0233-6723-2023-228-3-9
(Mi into1222)
 

Sufficient criterion for the exponential stability of a differential equation of neutral type

A. S. Balandin

Perm National Research Polytechnic University
References:
Abstract: A sufficient condition for the exponential stability of one differential equation of neutral type is obtained.
Keywords: neutral-type equation, functional differential equation, aftereffect, stability
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSNM-2023-0005
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. FSNM-2023-0005).
Document Type: Article
UDC: 517.929
MSC: 34K60
Language: Russian
Citation: A. S. Balandin, “Sufficient criterion for the exponential stability of a differential equation of neutral type”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228, VINITI, Moscow, 2023, 3–9
Citation in format AMSBIB
\Bibitem{Bal23}
\by A.~S.~Balandin
\paper Sufficient criterion for the exponential stability of a differential equation of neutral type
\inbook Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 228
\pages 3--9
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1222}
\crossref{https://doi.org/10.36535/0233-6723-2023-228-3-9}
Linking options:
  • https://www.mathnet.ru/eng/into1222
  • https://www.mathnet.ru/eng/into/v228/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:27
    Full-text PDF :13
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024