Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 227, Pages 3–19
DOI: https://doi.org/10.36535/0233-6723-2023-227-3-19
(Mi into1214)
 

On orders of $n$-term approximations of functions of many variables in the Lorentz space

G. A. Akishev

Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
References:
Abstract: In this paper, we consider the anisotropic Lorentz space of $2\pi$-periodic functions of many variables and the Nikolsky–Besov class in this space. We obtain estimates for the best approximations along the hyperbolic cross and the best $M$-term approximations of functions of the Nikolsky—Besov class with respect to the norm of the anisotropic Lorentz space for various relations between the parameters of the class and the space.
Keywords: Lorentz space, trigonometric polynomial, best $M$-term approximation
Document Type: Article
UDC: 517.51
MSC: 41A10
Language: Russian
Citation: G. A. Akishev, “On orders of $n$-term approximations of functions of many variables in the Lorentz space”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227, VINITI, Moscow, 2023, 3–19
Citation in format AMSBIB
\Bibitem{Aki23}
\by G.~A.~Akishev
\paper On orders of $n$-term approximations of functions of many variables in the Lorentz space
\inbook Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 227
\pages 3--19
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1214}
\crossref{https://doi.org/10.36535/0233-6723-2023-227-3-19}
Linking options:
  • https://www.mathnet.ru/eng/into1214
  • https://www.mathnet.ru/eng/into/v227/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :38
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024