Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 226, Pages 69–79
DOI: https://doi.org/10.36535/0233-6723-2023-226-69-79
(Mi into1203)
 

Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion

A. N. Kulikov, D. A. Kulikov

P.G. Demidov Yaroslavl State University
References:
Abstract: A periodic boundary-value problem for the dispersive Kuramoto–Sivashinsky equation is considered. The stability of homogeneous equilibria is examined and an analysis of local bifurcations with a change in stability is performed. This analysis is based on the methods of the theory of dynamical systems with an infinite-dimensional space of initial conditions. Sufficient conditions for the presence or absence of invariant manifolds are found. Asymptotic formulas for some solutions are obtained.
Keywords: Kuramoto–Sivashinsky equation, dispersion, boundary-value problem, stability, bifurcation, asymptotic formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-886
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-02-2022-886).
Document Type: Article
UDC: 517.929
MSC: 37L10, 37L15, 37L25
Language: Russian
Citation: A. N. Kulikov, D. A. Kulikov, “Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226, VINITI, Moscow, 2023, 69–79
Citation in format AMSBIB
\Bibitem{KulKul23}
\by A.~N.~Kulikov, D.~A.~Kulikov
\paper Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 226
\pages 69--79
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1203}
\crossref{https://doi.org/10.36535/0233-6723-2023-226-69-79}
Linking options:
  • https://www.mathnet.ru/eng/into1203
  • https://www.mathnet.ru/eng/into/v226/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :27
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024