Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 125–132
DOI: https://doi.org/10.36535/0233-6723-2023-224-125-132
(Mi into1179)
 

On the identification Volterra kernels in integral models of linear nonstationary dynamical systems

S. V. Solodusha, E. D. Antipina

L. A. Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk
References:
Abstract: In this paper, we propose an identification algorithm for a nonstationary linear dynamical system. Conceptually, this algorithm is based on the use of piecewise linear test signals and the reduction of the original problem to a Volterra integral equation of the first kind with two variable integration limits. The numerical implementation of this algorithm is based on the quadrature formula of the middle rectangles and the product integration method. The convergence of the method of middle rectangles for a new class of linear Volterra integral equations is examined.
Keywords: identification, nonstationary dynamical system, quadrature of middle rectangles, product integration method, convergence.
Funding agency Grant number
Russian Science Foundation 22-21-00409
This work was supported by the Russian Science Foundation (project No. 22-21-00409).
Document Type: Article
UDC: 519.642.5
MSC: 45D05
Language: Russian
Citation: S. V. Solodusha, E. D. Antipina, “On the identification Volterra kernels in integral models of linear nonstationary dynamical systems”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 125–132
Citation in format AMSBIB
\Bibitem{SolAnt23}
\by S.~V.~Solodusha, E.~D.~Antipina
\paper On the identification Volterra kernels in integral models of linear nonstationary dynamical systems
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 125--132
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1179}
\crossref{https://doi.org/10.36535/0233-6723-2023-224-125-132}
Linking options:
  • https://www.mathnet.ru/eng/into1179
  • https://www.mathnet.ru/eng/into/v224/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :61
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024