Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 109–114
DOI: https://doi.org/10.36535/0233-6723-2023-224-109-114
(Mi into1177)
 

Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space

E. Yu. Kuzmina

Irkutsk State University
References:
Abstract: In this paper, we find conditions of the existence of hypersurfaces in the $(n+1)$-dimensional Euclidean space $E^{n+1}$ whose main curvatures are proportional.
Keywords: $G$-structure, differentiable manifold, structural function, thin fan, initial pair.
Document Type: Article
UDC: 514.75
MSC: 53A07
Language: Russian
Citation: E. Yu. Kuzmina, “Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 109–114
Citation in format AMSBIB
\Bibitem{Kuz23}
\by E.~Yu.~Kuzmina
\paper Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 109--114
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1177}
\crossref{https://doi.org/10.36535/0233-6723-2023-224-109-114}
Linking options:
  • https://www.mathnet.ru/eng/into1177
  • https://www.mathnet.ru/eng/into/v224/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :24
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024