Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 222, Pages 69–82
DOI: https://doi.org/10.36535/0233-6723-2023-222-69-82
(Mi into1142)
 

This article is cited in 1 scientific paper (total in 1 paper)

On mutual arrangements of two $M$-curves of degree $4$

N. D. Puchkova

National Research University – Higher School of Economics in Nizhny Novgorod
References:
Abstract: We consider the problem of topological classification of mutual arrangements in the real projective plane of two $M$-curves of degree $4$. We study arrangements under the maximality condition (the oval of one of these curves has $16$ pairwise distinct common points with the oval of the other curve) and some combinatorial condition to select a special type of such arrangements. We list pairwise different topological models of arrangements of this type that satisfy the topological consequences of Bezout's theorem. There are more than 2000 such models. Examples of curves of degree $8$ realizing some of these models are given; we prove that 1728 models cannot be realized by curves of degree $8$. Proofs of the nonrealizability are performed out by Orevkov's method based on the theory of braids and links.
Keywords: plane real algebraic curve, decomposable curve, quasi-positive braid, Orevkov's method, Murasugi–Tristram inequality, Fox–Milnor condition.
Document Type: Article
UDC: 512.772, 515.165.4
MSC: 14P25, 14H99
Language: Russian
Citation: N. D. Puchkova, “On mutual arrangements of two $M$-curves of degree $4$”, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998).  Moscow, November 1–4, 2021. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222, VINITI, Moscow, 2023, 69–82
Citation in format AMSBIB
\Bibitem{Puc23}
\by N.~D.~Puchkova
\paper On mutual arrangements of two $M$-curves of degree~$4$
\inbook Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998).  Moscow, November 1–4, 2021. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 222
\pages 69--82
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1142}
\crossref{https://doi.org/10.36535/0233-6723-2023-222-69-82}
Linking options:
  • https://www.mathnet.ru/eng/into1142
  • https://www.mathnet.ru/eng/into/v222/p69
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :25
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024